首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128165篇
  免费   15888篇
  国内免费   6464篇
电工技术   9727篇
技术理论   2篇
综合类   8060篇
化学工业   23892篇
金属工艺   7122篇
机械仪表   7252篇
建筑科学   12775篇
矿业工程   3201篇
能源动力   6726篇
轻工业   12151篇
水利工程   2013篇
石油天然气   4405篇
武器工业   1187篇
无线电   11753篇
一般工业技术   16788篇
冶金工业   5742篇
原子能技术   1061篇
自动化技术   16660篇
  2024年   383篇
  2023年   2639篇
  2022年   4657篇
  2021年   7105篇
  2020年   5259篇
  2019年   4900篇
  2018年   4818篇
  2017年   5802篇
  2016年   7089篇
  2015年   7577篇
  2014年   9443篇
  2013年   9073篇
  2012年   8864篇
  2011年   8607篇
  2010年   6507篇
  2009年   6671篇
  2008年   6019篇
  2007年   7948篇
  2006年   7261篇
  2005年   6058篇
  2004年   4451篇
  2003年   3934篇
  2002年   3132篇
  2001年   2349篇
  2000年   1997篇
  1999年   1462篇
  1998年   1008篇
  1997年   873篇
  1996年   744篇
  1995年   576篇
  1994年   491篇
  1993年   360篇
  1992年   294篇
  1991年   258篇
  1990年   231篇
  1989年   190篇
  1988年   128篇
  1987年   98篇
  1986年   78篇
  1985年   102篇
  1984年   121篇
  1983年   84篇
  1982年   69篇
  1981年   57篇
  1980年   95篇
  1966年   43篇
  1965年   40篇
  1964年   62篇
  1962年   79篇
  1955年   47篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
121.
A microchannel heat exchanger with a triangular wave and symmetrical triangular wave structure was proposed in this paper. In addition, a new N-type microchannel heat exchanger was developed to balance the heat transfer performance and pressure drop. The relationship between different configurations of the N structure of the microchannel and the heat transfer performance was analyzed. The results showed that, at a high inlet flow rate, the symmetrical triangular wave microchannel had the best heat transfer performance, followed by the triangular wave microchannel and the straight channel. At the same flow rate, the degree of disturbance of the fluid was highest in the symmetrical N-structure microchannel, and an excellent heat transfer effect was observed.  相似文献   
122.
Raney-type Ni precursor alloys containing 75 at.% Al and doped with 0, 0.75, 1.5 and 3.0 at.% Ti have been produced by a gas atomization process. The resulting powders have been classified by size fraction with subsequent investigation by powder XRD, SEM and EDX analysis. The undoped powders contain, as expected, the phases Ni2Al3, NiAl3 and an Al-eutectic. The Ti-doped powders contain an additional phase with the TiAl3 DO22 crystal structure. However, quantitative analysis of the XRD results indicate a far greater fraction of the TiAl3 phase is present than could be accounted for by a simple mass balance on Ti. This appears to be a (TixNi1−x)Al3 phase in which higher cooling rates favour small x (low Ti-site occupancy by Ti atoms). SEM and EDX analysis reveal that virtually all the available Ti is contained within the TiAl3 phase, with negligible Ti dissolved in either the Ni2Al3 or NiAl3 phases.  相似文献   
123.
《Ceramics International》2020,46(9):12921-12927
The further development of clean energy requires the use of more stable and reliable energy storage system. In addition to lithium ion battery power supplies, sodium ion batteries also have prospects for application and development thanks to the low cost and abundant resource. NaTi2(PO4)3 has attracted much attention due to its three-dimensional channels for sodium ion transfer. In order to meliorate sodium storage properties of NaTi2(PO4)3 electrode, a facile strategy of Sn substitution at Ti sites was employed, and a series of electrodes were successfully synthesized through sol-gel route. The electrochemical performances of Sn substituted composites are significantly improved compared with bare NaTi2(PO4)3/C. And it was found that NaSn0.2Ti1.8(PO4)3 (NTP/C-Sn-2) delivers the largest capacity, and it also demonstrates the outstanding cycling performances. NTP/C-Sn-2 has discharge capacity of 131.1 mAh g−1 at 4 A g−1 in rate test and 121.4 mAh g−1 at 1 A g−1 after 1000 cycles in cycling test. The experimental results show that NaTi2(PO4)3/C with Sn substitution with proper content exhibits the great potential in anode for sodium ion batteries, and can further provide reference for next generation electrode materials and battery systems.  相似文献   
124.
125.
Organic devices like organic light emitting diodes (OLEDs) or organic solar cells degrade fast when exposed to ambient air. Hence, thin-films acting as permeation barriers are needed for their protection. Atomic layer deposition (ALD) is known to be one of the best technologies to reach barriers with a low defect density at gentle process conditions. As well, ALD is reported to be one of the thinnest barrier layers, with a critical thickness – defining a continuous barrier film – as low as 5–10 nm for ALD processed Al2O3. In this work, we investigate the barrier performance of Al2O3 films processed by ALD at 80 °C with trimethylaluminum and ozone as precursors. The coverage of defects in such films is investigated on a 5 nm thick Al2O3 film, i.e. below the critical thickness, on calcium using atomic force microscopy (AFM). We find for this sub-critical thickness regime that all spots giving raise to water ingress on the 20 × 20 μm2 scan range are positioned on nearly flat surface sites without the presence of particles or large substrate features. Hence below the critical thickness, ALD leaves open or at least weakly covered spots even on feature-free surface sites. The thickness dependent performance of these barrier films is investigated for thicknesses ranging from 15 to 100 nm, i.e. above the assumed critical film thickness of this system. To measure the barrier performance, electrical calcium corrosion tests are used in order to measure the water vapor transmission rate (WVTR), electrodeposition is used in order to decorate and count defects, and dark spot growth on OLEDs is used in order to confirm the results for real devices. For 15–25 nm barrier thickness, we observe an exponential decrease in defect density with barrier thickness which explains the likewise observed exponential decrease in WVTR and OLED degradation rate. Above 25 nm, a further increase in barrier thickness leads to a further exponential decrease in defect density, but an only sub-exponential decrease in WVTR and OLED degradation rate. In conclusion, the performance of the thin Al2O3 permeation barrier is dominated by its defect density. This defect density is reduced exponentially with increasing barrier thickness for alumina thicknesses of up to at least 25 nm.  相似文献   
126.
The development of a miniature triaxial apparatus is presented. In conjunction with an X-ray micro-tomography (termed as X-ray μCT hereafter) facility and advanced image processing techniques, this apparatus can be used for in situ investigation of the micro-scale mechanical behavior of granular soils under shear. The apparatus allows for triaxial testing of a miniature dry sample with a size of 8mm×16mm (diameter × height). In situ triaxial testing of a 0.4–0.8 mm Leighton Buzzard sand (LBS) under a constant confining pressure of 500 kPa is presented. The evolutions of local porosities (i.e., the porosities of regions associated with individual particles), particle kinematics (i.e., particle translation and particle rotation) of the sample during the shear are quantitatively studied using image processing and analysis techniques. Meanwhile, a novel method is presented to quantify the volumetric strain distribution of the sample based on the results of local porosities and particle tracking. It is found that the sample, with nearly homogenous initial local porosities, starts to exhibit obvious inhomogeneity of local porosities and localization of particle kinematics and volumetric strain around the peak of deviatoric stress. In the post-peak shear stage, large local porosities and volumetric dilation mainly occur in a localized band. The developed triaxial apparatus, in its combined use of X-ray μCT imaging techniques, is a powerful tool to investigate the micro-scale mechanical behavior of granular soils.  相似文献   
127.
Formation and structural transformations of yttrium orthoferrite crystals have been studied using X-ray diffractometry, Mössbauer spectroscopy and transmission electron microscopy combined with electron microdiffraction. Said processes have been studied under heat treatment of glycine-nitrate combustion products. There have been identified formations of three structural yttrium orthoferrite modifications – amorphized hexagonal <h1>-YFeO3 (P63cm) and nanocrystalline hexagonal h2-YFeO3 (P63/mmc), as well as nanocrystalline orthorhombic o-YFeO3 (Pbnm), which are selectively formed depending on available three-dimensional confinements. Based on the analysis of changes in the fluid and size composition formulation, it has been proposed mechanism for formation and transformation of YFeO3 nanocrystals, including growth stage of h2-YFeO3 crystals due to amorphized phase of <h1>-YFeO3 up to critical size of about 15?nm and their subsequent transformation into orthorhombic form o-YFeO3.  相似文献   
128.
The primary goal of this study is to create and test a lecture‐capture system that can rearrange visual elements while recording is still taking place, in such a way that student performance can be positively influenced. The system we have devised is capable of integrating and rearranging multimedia sources, including learning content, the instructor and students' images, into lecture videos that are embedded in a website for students to review after school. The present study employed a two‐group experimental design, with 153 participants (145 females and 8 males) making up an experimental group in which lecture courses were recorded using the new lecture‐capture system, and 149 participants (140 females and 9 males) forming a control group whose lectures were recorded by traditional means. All participants were in the freshman college and studying Introduction to Computer and Information Science in one of six classes, and were randomly assigned to one of the two groups. The participants' midterm examination and final examination scores were collected as indicators of their academic performance, with their mathematics entrance scores used as a pre‐test. The findings obtained from analysis of covariance (ANCOVA) suggest that appropriate rearrangement of visual elements in lecture videos can significantly impact students' learning performance.  相似文献   
129.
介绍了超高性能混凝土(UHPC)的制备原理和性能特点,对UHPC国内外研究和应用情况进行了综述,指出了我国UHPC研究和应用中存在的问题。结果表明:UHPC是一种具有优异的力学性能、耐久性能和环保效益的新型水泥基复合材料。国外在UHPC理论研究和应用研究方面都取得了大量成果,在实际工程中已经获得了广泛的应用;近年来我国在理论研究和应用方面也得到了快速发展;如何简化UHPC制备工艺、降低生产成本、补偿自收缩是今后的主要研究方向,完善相关规范标准以更好地指导UHPC现浇工程应用是目前首要解决的问题。随着环保和可持续发展理念的日益重视,UHPC这种低碳环保材料将有广阔的发展前景。  相似文献   
130.
The crystallization phenomena of spinel in CaO-MgO-Al2O3-SiO2-Fe2O3 glass have received much attention due to the particular role in preparation of glass-ceramic materials, which represent an effective option to manage hazardous waste. In this study, both preliminary spinel and secondary spinel were precipitated in the precursor glass. The formation of these spinel was meticulously assessed by a combination of X-ray diffractometry and scanning electron microscopy. The structure of the microenvironment in the precursor glass was characterized by Raman spectrums. These advanced techniques highlight the potential for one-step crystallization of the glass. The investigation, which focused on one-step crystallization, demonstrated the growth of pyroxene on spinel accompanying a migration of chromium. The results also show the microstructure of the obtained glass-ceramic was very dependent on the heat-treat temperature. This study not only unambiguously reveals the precipitation mechanisms of spinel but also provides more documentation for one-step crystallization in the glass-ceramics field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号